Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ren-Jie Yin, Xiao-Bing Wang and Ling-Yi Kong*

Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, People's Republic of China

Correspondence e-mail: lykong@jlonline.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.057$
$w R$ factor $=0.168$
Data-to-parameter ratio $=7.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Syringin monohydrate

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$, the syringin [4-(3-hydroxy-1-propenyl)-2,6-dimethoxyphenyl- β-d-glucopyranoside] molecule contains a benzene ring, two methoxy groups, an allyl group and a D-glucose fragment which adopts a chair conformation. A molecular column running along the a axis is formed via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The columns are assembled into a three-dimensional framework by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Comment

The title compound, (I), was first obtained from the radix of Acanthopanax senticosus by Bernays (1841) and found to possess immunomodulatory activities (Cho et al., 2001) and anti-inflammatory and antinociceptive activities (Choi et al., 2004). It was isolated from the heartwood of Osmanthus armatus during the course of our ongoing studies on the chemical constituents of Osmanthus (Yin et al., 2006), which is distributed in southeast China and contains mainly lignan, phenylpropanoid and secoiridiod glycosides. The structure of syringin was elucidated on the basis of spectroscopic methods such as ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Wang, 1980; Karasawa, 1986; Wu et al., 1999). We report here the crystal structure of (I) (Fig. 1).

The syringin molecule, except for the D-glucose fragment, is planar with an r.m.s. deviation of $0.0535 \AA$ for atoms C1-C11 and O1-O4. The d-glucose ring adopts a chair conformation with puckering parameters $Q=0.585$ (6) $\AA, \theta=5.6(6)^{\circ}$ and $\Phi=45$ (7) ${ }^{\circ}$ (Cremer \& Pople, 1975) as does that in phillyrin (Yin et al., 2006). The hydroxymethyl group and the benzene ring have a trans configuration. In the crystal structure of (I), the syringin and water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and the syringin molecules related by translation along the a axis are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table $1 ; C g$ is the centroid of the benzene ring), forming a molecular column along the a axis (Fig. 2). The columns are further linked by an

Received 18 October 2006 Accepted 11 November 2006

Figure 1
A view of the asymmetric unit of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30\% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 2
A partial packing diagram of (I), showing the hydrogen bonds and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (dashed lines). For the sake of clarity, H atoms not involved in these interactions have been omitted (symmetry codes as in Table 1).
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\mathrm{iii}}$ hydrogen bond (Table 1), forming a threedimensional framework.

Experimental

The dried heartwood (2 kg) was extracted three times with boiling ethanol $(95 \%, 3 \times 2 \mathrm{l})$. After removal of the solvent under reduced pressure, the extract was suspended in water and then partitioned successively with light petroleum, $\mathrm{CHCl}_{3}, \mathrm{EtOAc}$ and n - BuOH . The n - BuOH fraction was chromatographed on a silica gel column, using a gradient mixture of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ as eluant. The fraction eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(4: 1 \mathrm{v} / \mathrm{v})$ was further purified by sephadex LH20 column chromatography using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1 \mathrm{v} / \mathrm{v})$ as eluant to afford the title compound $(2.0 \mathrm{~g}$, m.p. $464-465 \mathrm{~K}) .[\alpha]_{\mathrm{D}}=-5.8(\mathrm{c}$, $0.01, \mathrm{MeOH})$. ESI-MS $(\mathrm{m} / \mathrm{z}): 407[\mathrm{M}+\mathrm{Cl}]^{-. ~}{ }^{1} \mathrm{H}$ NMR (MeOD): $\delta 6.75$ $(2 \mathrm{H}, s, \mathrm{H}-3, \mathrm{H}-5), 6.55(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-7), 6.33\left(1 \mathrm{H}, d t, J_{1}=\right.$ $\left.15.9 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, \mathrm{H}-8\right), 4.87\left(1 \mathrm{H}, d, J=7.5, \mathrm{H}-1^{\prime}\right), 4.22(2 \mathrm{H}, d, J=$ $5.5 \mathrm{~Hz}, \mathrm{H}-9), 3.86(6 \mathrm{H}, s, \mathrm{H}-10,11), 3.80-3.30(6 \mathrm{H}, m$, sugar H$) ;{ }^{13} \mathrm{C}$ NMR (MeOD): $\delta 154.4$ (C-2,6), 136.0 (C-7), 135.3 (C-1), 131.3 (C-7), 130.1 (C-8), 105.5 (C-3,5), 105.4 (C-1'), 78.4 (C-5'), 77.8 (C-3'), 75.7 (C-2'), 71.4 (C-4'), 63.5 (C-9), 62.6 (C-6'), 57.0 (C-10,11). Crystals
suitable for diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.362 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=390.38$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.855$ (2) \AA
$b=19.519$ (3) \AA
$c=20.084$ (3) \AA
$V=1903.3(9) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colourless
$0.49 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.980, T_{\text {max }}=0.989$

9643 measured reflections 1986 independent reflections 1241 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.085$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.168$
$S=1.02$
1986 reflections
251 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[{\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0605 P)^{2}\right.} \\
&+3.1656 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$	0.82	2.10	$2.916(7)$	172
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 3$	0.82	2.47	$2.827(5)$	107
$\mathrm{O} 9-\mathrm{H} 9 \cdots \mathrm{O} 10$	0.82	2.07	$2.881(8)$	172
$\mathrm{O} 10-\mathrm{H} 18 \cdots \mathrm{O}^{\mathrm{i}}$	0.85	2.06	$2.902(9)$	172
$\mathrm{O} 10-\mathrm{H} 19 \cdots \mathrm{O} 5$	0.85	2.36	$2.921(6)$	124
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	0.93	2.38	$2.768(7)$	105
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.40	$3.334(8)$	160
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\text {ii }}$	0.98	2.63	$3.538(8)$	154
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O}^{\text {ii }}$	0.98	2.54	$3.493(8)$	163
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O}^{2}$	0.97	2.59	$2.938(8)$	101
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{iii}}$	0.82	1.92	$2.730(6)$	168
$\mathrm{C} 10-\mathrm{H} 10 C \cdots g^{\mathrm{i}}$	0.96	3.00	$3.805(6)$	142
$\mathrm{C} 11-\mathrm{H} 11 C \cdots g^{\text {ii }}$	0.96	2.92	$3.812(9)$	155
Symmetry codes: (i) $x-1, y, z ;$ (ii) $x+1, y, z ;$ (iii) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$.				

H atoms of the water molecule and the hydroxyl groups were located initially in a difference Fourier map and then constrained to ride on the parent O atom with $\mathrm{O}-\mathrm{H}=0.82-0.85 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The methyl H atoms were constrained to an ideal geometry with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. All remaining H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$) and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration was assigned on the basis of the known configuration of D-glucose.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

organic papers

References

Bernays, S. (1841). Liebigs Ann. 40, 320.
Bruker (2000). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, J., Shin, K.-M., Park, H.-J., Lee, Y.-S., Rew, J.-H. \& Lee, K.-T. (2004). Planta Med. 70, 1027-1032.
Cho, J.-Y., Nam, K.-H., Kim, A.-R., Park, J., Yoo, E.-S., Baik, K.-U., Yu, Y.-H. \& Park, M.-H. (2001). J. Pharm. Pharmacol. 53, 1287-1294.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Karasawa, H. (1986). Yakugaku Zasshi, 106, 721-723. (In Japanese.)
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, M.-S. (1980). Chin. Trad. Herb. Drugs, 11, 389-390.
Wu, L.-J., Shen, Y., Zheng, J. \& Wu, B. (1999). Chin. J. Mag. Reson. 15, 465467.

Yin, R.-J., Wang, X.-B. \& Kong, L.-Y. (2006). Acta Cryst. E62, o4606-o4608.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

